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Brézin-Zee dynamical correlator: An S-matrix Brownian motion approach

A. M. S. Macêdo
Laboratório de Fı́sica Teo´rica e Computacional, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil

~Received 16 October 1996!

We study the smoothed dynamical density-density correlator of the eigenvalues of random matrices taken
from certain types of ensembles. This quantity has recently been derived by Bre´zin and Zee for random
Hermitian matrices. Our approach is based on anS-matrix Brownian motion model. It provides exact results
that extend Bre´zin and Zee’s calculation to a larger class of matrices and is also technically much simpler.
@S1063-651X~97!10902-3#

PACS number~s!: 02.50.2r, 05.40.1j, 05.45.1b
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I. INTRODUCTION

Random-matrix theory~RMT! is perhaps one of the mos
powerful nonperturbative techniques described in past
recent literature@1#. Its range of application is impressiv
and includes essentially all energy scales in physics, go
from condensed matter to nuclear reaction theory and
ementary particle physics. The two most important pred
tions of RMT are that properties concerning the full eige
value support are largely nonuniversal~as, e.g., the averag
eigenvalue density!, whereas eigenvalue statistics on t
scale of the mean level spacing are universal and dep
solely on generic symmetries of the system~such as the pres
ence or absence of time-reversal invariance!. It is currently
widely acknowledged that a RMT approach is the most
propriate one when universal features of a physical phen
enon need to be uncovered.

The random-matrix ensembles most frequently studied
the recent literature can be classified into three weakly o
lapping categories:~i! zero-dimensional matrix field theories
which have found applications in disordered meta
grains @2–4#, quantum chaos@5#, nuclear physics@6#,
QCD @7# and two-dimensional~2D! quantum gravity@8#;
~ii ! Brownian motion ensembles, which have been used
describe quasi-one-dimensional disordered conduc
@9–11#, crossover ensembles@12#, parametric correla-
tions @13,14#, and wave propagation in disordered m
dia @15#; and ~iii ! one-dimensional matrix field theories
which have been applied to matrix quantum mechanics@16#,
c51 string field theory@8#, quantum chaos, and disordere
metallic grains in the presence of external adiabatic per
bations @17#. The techniques developed in the literature
solve random-matrix problems vary significantly from o
category to the other. The most common techniques to s
zero-dimensional matrix field theories are orthogonal po
nomials @1#, Efetov’s coset method@4,18#, Brézin’s method
of anticommuting variables @19#, the graded eigenvalu
method @20#, Kazakov’s contour integral representatio
theory @21#, Korteweg–de Vries~KdV! hierarchy of equa-
tions @8#, topological expansions@8#, and the functional de-
rivative approach@22#. Brownian motion ensembles hav
been studied by means of biorthogonal functions@12#, Bethe
ansatz methods@23#, Dyson’s hydrodynamical equa
tions @24#, moment expansion techniques@10#, and super-
symmetry @25#. Finally, one-dimensional matrix field theo
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ries are most conveniently solved by large-N QCD
techniques@27#, supersymmetry@17#, transfer-matrix tech-
niques @4#, and continuous Liouville theory@8#.

A typical random-matrix ensemble is characterized by
probability distribution

P~M !5Z21exp@2N tr V~M !#, ~1!

whereV(M ) is a phenomenological confining potential, us
ally chosen so as to make the average level density a
with experimental observations, andN is the number of ei-
genvalues ofM . The simplest choice is of course the ha
monic potentialV(M )5k2M2/2, for which the average leve
density reads

r~x!5
Nk2

2p
A 4

k2
2x2. ~2!

This is the well-known Wigner’s semicircle law. Other po
sibilities include cases whereV(M ) is a polynomial of de-
gree 2n, which yields

r~x!5
P2n22~x!

p
Aa22x2, ~3!

wherea ~the edge of the spectrum! and the coefficients of the
polynomialP2n22(x) are determined by the coefficients o
V(M ). These results can be derived by orthogonal poly
mials techniques@28# and saddle point methods@29#. Ob-
serve that the nonuniversal structure ofr(x) is quite general.
We would like to stress that ensembles defined byV(M )
being a polynomial have found important applications
nonperturbative approaches to the theory of matter coup
to 2D quantum gravity@8#.

It is now rather well established in the literature that e
sembles like Eq.~1! exhibit universal behavior if correlation
are measured on the scale of a few mean-level spac
(D.1/N). The universal behavior has been classified in
three types: the bulk universality, characterized by a si
kernel @1#, the hard-edge universality, characterized by
Bessel kernel@30# and the soft-edge universality@31#. The
terminology hard and soft edges has been introduced
Refs. @30# and @31# to distinguish between bounded and u
bounded eigenvalue supports, respectively.
1457 © 1997 The American Physical Society
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Recently, Bre´zin and Zee@26,27# ~see also Ref.@32#! re-
discovered a somewhat weaker universality class in
problem. They showed that when correlations are meas
on scales of orderO(N0), one obtains functions that depen
.
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on the confining potential only through its end points. To
specific, they proved that for ensembles defined byV(M ) of
polynomial form, the two-point density-density correlator
given by
r~x,y!5
1

2bp2

]2

]x]y
lnU A~b2x!~x2a!~b2y!~y2a!2ab2xy1~a1b!~x1y!/2

2A~b2x!~x2a!~b2y!~y2a!2ab2xy1~a1b!~x1y!/2
U , ~4!
-
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wherea,x,y,b and @a,b# is the support of the spectrum
This remarkable result has been shown@34# to be valid in
cases whereV(M ) is nonpolynomial and infinite~hard wall
potential! at the pointsx5a andx5b. Recently, generaliza
tions of Eq.~4! to more complicated ensembles@33#, such as
those where the average density has support on several
overlapping intervals, have been derived.

In mesoscopic systems formulas of this type have sho
up in the calculation of two-point functions relevant to d
scribing universal fluctuations of transport observables.
this application of RMT the presence or the absence o
hard edge in the spectrum is crucial for determining the ex
value of the amplitude of the fluctuations of the observab
such as the conductance of a two-probe device.

It is quite instructive to use Eq.~4! to recover some well-
known results of RMT by taking certain limits. For instanc
if we let a→2b and b→` we obtain the Dyson-Mehta
formula

r~x,y!5
1

2bp2

]2

]x]y
lnux2yu, ~5!

which describes fluctuations of linear statistics in ensemb
of unbounded eigenvalue support. If we takea→0 and
b→` we recover a formula, which has been derived ori
nally by Beenakker@22# in the context of the globa
maximum-entropy approach to disordered conductors,

r~x,y!5
1

2bp2

]2

]x]y
lnUAx1Ay

Ax2Ay U . ~6!

This formula was later shown to be exact for describing fl
tuations of transport observables in open ballistic ca
ties @35#. To disordered conductors with quasi-on
dimensional geometries Eq.~6! does not apply, mainly due
to the presence of diffusion modes, which give rise to ad
tional correlations between transmission eigenvalues. In
case, the appropriate random-matrix ensemble does not
the form shown in Eq.~1!, but must be generated from
Brownian-motion model, namely, the Dorokhov-Mello
Pereyra-Kumar~DMPK! equation @9#. So far, extensions o
formulas like Eq.~6! to more general geometries have n
been successful within the framework of random mat
theory, although results obtained from diagrammatic cal
lations are available in the literature for these cases as w

More recently, Bre´zin and Zee extended their result
ensembles in the category of one-dimensional matrix fi
theories. Using the language of large-N QCD, they showed
on-

n

n
a
ct
s,

,

s

-

-
i-

i-
is
ve

t

-
ll.

d

that on scales ofO(N0), the dynamical two-point density
density correlator has the form

r~x,y;u!5
1

2bp2

]2

]x]y
lnU A~1,u!

A~2,u!
U, ~7!

where

A~s,u!5sA~b2x!~x2a!~b2y!~y2a!2ab2xy

1~a1b!~x1y!/21
~b2a!2

2
sinh2u. ~8!

In this formula the parameteru labels a continuous family o
ensembles of random matrices with parametric depende
In the language of one-dimensional matrix field theo
u5u(t) is a well-behaved function of the target space va
able t ~usually interpreted as time!. The importance of this
result in mesoscopic physics can be illustrated by two sim
particular cases. If we take the limitsa→2b, u→X2/(2b)
andb→` we get

r~x,y;X!5
1

bp2ReH 1

~ i ~x2y!1X2!2 J , ~9!

which is the result found by Altshuler@13,36# and collabo-
rators, using diagrammatic expansions to study the effec
external parametric perturbations in the density-density c
relator of disordered metallic grains. Similarly, if we le
a→0, u→X2/Ab andb→` we get~after changing variables
x→Am andy→An) the expression

r̃~m,n;X!5
1

bp2 (
s561

ReH 1

~ i ~m1sn!1X2!2 J , ~10!

which is precisely the result found in Ref.@37# for the para-
metric density-density correlator of transmission eigenval
in open ballistic cavities.

In Ref. @27# it has been shown that Eq.~7! is valid for
confining potentials,V(M ), which are polynomials. Unfor-
tunately, the explicit calculations of this work are somewh
cumbersome and extensions to more general functio
forms of V(M ) seem unlikely. However, we know from
Ref. @34# that the static correlator (u50) is valid under
quite weak assumptions about the form of the confining
tentialV(M ). The natural question seems to be to what e
tent the dynamical correlator (uÞ0) is independent of the
functional form ofV(M ).
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In this paper we provide a first step towards answer
this question. We give an alternative derivation of Eq.~7!
that has the appealing feature of being much simpler but
more general, since our strongest assumption aboutV(M ) is
that it is capable of providing confinement of the leve
within a single interval. In Sec. II, we introduce th
S-matrix Brownian motion ensemble, which provides lev
confinement in a natural way by means of symmetry requ
ments. We sketch briefly how the Fokker-Planck equatio
obtained from the stochastic process in theS-matrix mani-
fold. In Sec. III, we show that Eq.~7! is a direct consequenc
of Dyson’s hydrodynamical approximation to the dynam
of anSmatrix undergoing Brownian motion on its manifold
A summary and conclusions are given in Sec. IV.

II. THE S-MATRIX BROWNIAN MOTION ENSEMBLE

In the early days of RMT, Brownian motion ensembl
were introduced by Dyson@24# with the motivation of im-
proving the physical content of the stationary theory
Wigner. While quite successful as a mathematical tool
describing local statistics of the spectra of complex nuc
the original Wigner ensembles were known to make qu
wrong predictions for global properties, such as the aver
level density. In a remarkable paper@24#, Dyson showed
how to build a new class of random-matrix ensembles wit
lot of desirable properties and, in this way, he laid the fou
dations of modern nonequilibrium RMT. The ensemble
troduced by Dyson is physically reasonable, mathematic
tractable, recovers Wigner’s local statistics, and agrees
with the observed eigenvalue density. Inspired by Brown
motion theory, Dyson made the following assumptions:~1!
the true Hamiltonian can be derived from the bare one
equally likely random perturbations;~2! the strength of the
perturbation is controlled by a parameter whose phys
meaning depends on the model system;~3! the stochastic
process is biased by fictitious driving forces such that it p
duces the observed eigenvalue density. Dyson’s Brown
motion model has since been successfully applied to a la
variety of physical systems, including those with partia
broken symmetries and/or adiabatic parametric pertu
tions. Recent improvements of Dyson’s theory consisted
generalizations of his third hypothesis to include cases
which the symmetries of the physical system impose a p
ticular biasing of the stochastic process, which cannot
mimicked by fictitious forces. Examples of such Browni
motion models are the DMPK equation, theV-matrix en-
semble, and theS-matrix ensemble.

TheSmatrix by definition establishes a relation betwe
incoming flux amplitudesI and I 8 and outgoing onesO and
O8:

SS I

I 8D 5S O

O8D . ~11!

Convervation of probability implies thatS is unitary. Math-
ematically, unitary matrices can be parametrized by the
lowing polar decomposition@35#:
g
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S5S u~1! 0

0 u~2!D S 2A12t At

At A12t
D S u~3! 0

0 u~4!D , ~12!

whereu( i )( i51, . . . ,4) areN3N unitary matrices andt de-
notes an N3N diagonal matrix with real eigenvalue
0<ta<1 (a51,2, . . . ,N).

The stationary~maximum entropy! S-matrix ensemble
has been introduced in Ref.@35#, and the Brownian motion
ensemble in Refs.@12# and @38#. While the maximum en-
tropy ensemble is somewhat straightforward~the S matrix
simply covers its manifold ergodically!, the Brownian mo-
tion ensemble has some subtlety. Following the generali
form of Dyson’s hypothesis, the ensemble can be constru
by a stochastic process, which has built into it the symm
tries of the problem.

So, letS(t) denote a point in theS-matrix manifold, and
let S0(dt) be a random unitary matrix~taken from a uniform
distribution!, where the parametert is phenomenological in
Dyson’s sense. The pointS(t) performs isotropic Brownian
motion determined by the law

S~ t1dt !5S~ t !S0~dt !. ~13!

We choose the functional dependence ofS0(dt) such that
S0(dt→0)→1. Without going into the details of the deriva
tion, which can be found in Ref.@12#, the stochastic proces
above can be described in the continuum limit by t
Fokker-Planck equation

]W

]t
5(

i51

N S 2
]

]t i
Di

~1!1
]2

]t i
2Di

~2!DW, ~14!

where the drift and diffusion coefficients are given, resp
tively, by

Di
~1!52~11b/2!t i1b/21b (

j ~Þ i !

t i~12t i !

t i2t j
~15!

Di
~2!5t i~12t i !. ~16!

The parameterb labels symmetry classes:b51 for orthogo-
nal systems, whereasb52 andb54 for unitary and sym-
plectic systems, respectively. Observe that in the lim
t→` Eq. ~14! has a maximum-entropy stationary solution

Weq~t!5Z21)
i, j

ut i2t j ub)
i51

N

t i
b/221 , ~17!

in which Z is a normalization constant. Note the presence
the typical random-matrix eigenvalue repulsion sin
Weq→0 if any t i→t j . Equation~14! defines theS-matrix
Brownian motion ensemble.

III. BRÉ ZIN-ZEE DYNAMICAL CORRELATOR

In Ref. @27# the following one-dimensional matrix field
theory has been considered
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P~M !5Z21exp2E
2`

`

dt Tr@K~d/dt!M1V~M !#, ~18!

which corresponds to ac51 string field theory. Using large
N QCD techniques with the generalized gluon propagato

Di j ,kl~ t ![^Mi j ~ t !Mkl~0!&}exp@2u~ t !#, ~19!

in which u(t) is a smooth function with finite value a
t50, they showed that the two-point dynamical densi
density correlator has the form shown in Eq.~7!.

In this section we demonstrate how this result can be
tained from theS-matrix Brownian motion ensemble. Th
crucial point is that this ensemble has a natural confinem
of levels induced by the symmetry of the unitary group. S
if Eq. ~7! is as generally valid as its static counterpart, th
one might expect that it may be obtained from standard n
equilibrium RMT, provided one finds the appropriate d
namical biasing of the stochastic process. Here, we ass
that the symmetries of the unitary group provide the do
nant mechanism for the relaxation of the correlators in
universal domain, which is, as discussed in the Introduct
of O(N0).

We start by writing Eq.~14! in the form

]P

]t
5(

i51

N F2
]

]wi
Di1

1

4

]2

]w i
2GP, ~20!
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wherew i5arcsinAt i and

Di5
b22

4
csc~2w i !1

b

4
cot~2w i !

2
b

2 (
j ~Þ i !

sin~2w i !

cos~2w i !2cos~2w j !
. ~21!

Define the average level density

s~w,t ![K (
n51

N

d~w2wn!L
t

, ~22!

which has the useful propertys(w,`)52N/p[s0. Note
that the choice of these variables is motivated by the tec
cal need to unfold the spectrum. Nonetheless, the need
such a procedure does not impose severe restrictions on
functional form of the one-body potentialV(t). The hydro-
dynamical equations that we shall introduce briefly, requ
for their solution unfolding of the spectrum on an interval
O(N0), which corresponds to the universal regime of inte
est. Close to the end points the potential is still free of co
straints.

Following Dyson, we now take the hydrodynamic limit o
Eq. ~20!. The technical details of such a standard proced
are described in detail in Ref.@24#, ~see also Ref.@14#!. The
final result is that the average level density in the largeN
limit obeys the nonlinear equation
]s~w,t !

]t
52b

]

]w S s~w,t !
]

]w
`E

0

p/2

s~w8,t !lnUcos~2w!2cos~2w8!Udw8D . ~23!
he
it
ghly
o
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e
as
For our purpose it is sufficient to solve this equation
linearizing it around the equilibrium solution. We define t
function

ds~w,t ![s~w,t !2s0 , ~24!

which, by virtue of Eq.~23!, satisfies the linear equation

]ds~w,t !

]t
52bs0`E

0

p/2

ds~w8,t !Q~w,w8!dw8, ~25!

where

Q~w,w8!54(
n51

`

ncos~2nw!cos~2nw8!. ~26!

This equation in the main result of this section and so
comments are in order. It is for our purpose more import
than the Brownian-motion Fokker-Planck equation itself, b
cause it is stripped of nonuniversal features. The form of
kernelQ(w,w8) is fixed by the equilibrium level repulsion
potential, which yields~as we discussed in the Introduction!,
under quite weak assumptions, the universal static den
density correlator@see Eq.~4!#. The effect of the drift and
diffusion coefficients of the Brownian motion ensemble
e
t
-
e

y-

this equation is twofold: first it provides the bounds for t
integral, which in fact is fixed by symmetry, and second
must be such that the average eigenvalue density is rou
constant on a scale ofO(N0). This last constraint comes als
naturally from the structure of theS-matrix manifold. This
integrodifferential equation can be solved exactly by Four
series. With this in mind we propose the expansion

ds~w,t !5 (
n51

`

dsn~ t !cos~2nw!, ~27!

and after substituting Eq.~27! into Eq. ~25! we find the or-
dinary differential equation

ddsn~ t !

dt
52bpns0dsn~ t !, ~28!

which can be easily solved to yield

dsn~ t !5dsn~0!e2nu~ t !, ~29!

whereu(t)5bps0t. We are now in a position to calculat
the time-dependent two-point correlator, which is defined
the following equilibrium average
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S~w,w8;t ![^ds~w,t !ds~w,0!&eq

[ (
n51

`

^dsn~ t !dsn~0!&eqcos~2nw!cos~2nw8!.

~30!

Using Eq.~29! we find

^dsn~ t !dsn~0!&eq5e2nu~ t !^dsn~0!dsn~0!&eq

5e2nu~ t !
8n

bp2 . ~31!

In Eq. ~31! we have inserted the value of the static correlat
which can be calculated directly from the equilibrium sol
tion by standard methods. Inserting~31! into ~30! and evalu-
ating the infinite sum we find the closed-form result

S~w,w8;u!5
1

2bp2

]

]w]w8
lnU coshu2cos2~w1w8!

coshu2cos2~w2w8!
U.
~32!

To make contact with the Bre´zin-Zee dynamical correlato
we need to perform the following change of variables:

x5
b1a

2
2
b2a

2
cos2w,

y5
b1a

2
2
b2a

2
cos2w8, ~33!

after which we find

r~x,y;u!5
1

2bp2

]2

]x]y
lnU A~1,u!

A~2,u!
U, ~34!
e

.

r,

where

A~s,u!5sA~b2x!~x2a!~b2y!~y2a!2ab2xy

1~a1b!~x1y!/21
~b2a!2

2
sinh2u. ~35!

This is precisely the result obtained in Ref.@27#.

IV. SUMMARY AND CONCLUSIONS

In this work we have demonstrated how Bre´zin-Zee’s dy-
namical correlator can be obtained from anS-matrix Brown-
ian motion model. A clear advantage of our approach is
simplicity, in comparison with the diagrammatic method
Ref. @27#. Furthermore, our ensemble of matrices has natu
confinement of levels, which is induced by symmetry. In th
way, the fundamental role of the potentialV(M ) ~see Intro-
duction! for providing the spectral end-point dependence
the universal correlators is incorporated into the theory fr
the beginning, without any particular assumption on t
functional form ofV(M ). We believe that such an approac
has considerable practical importance, particularly in und
standing the connections between the various classe
random-matrix ensembles and the related model systems
that matter. Extensions of our results to more elaborate ca
such as ensembles where the eigenvalue support con
multiple nonoverlapping intervals and crossover proble
does seem possible, but will be left to the future.
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