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Brézin-Zee dynamical correlator: An S-matrix Brownian motion approach
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We study the smoothed dynamical density-density correlator of the eigenvalues of random matrices taken
from certain types of ensembles. This quantity has recently been derived kin Bred Zee for random
Hermitian matrices. Our approach is based orSamatrix Brownian motion model. It provides exact results
that extend Brgin and Zee’s calculation to a larger class of matrices and is also technically much simpler.
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PACS numbegps): 02.50-r, 05.40+j, 05.45+b

[. INTRODUCTION ries are most conveniently solved by lafye-QCD
techniques[27], supersymmetnf17], transfer-matrix tech-
Random-matrix theoryRMT) is perhaps one of the most niques[4], and continuous Liouville theory8].
powerful nonperturbative techniques described in past and A typical random-matrix ensemble is characterized by the
recent literature[1]. Its range of application is impressive Probability distribution
and includes essentially all energy scales in physics, going
from condensed matter to nuclear reaction theory and el- P(M)=Z""ex —N tr V(M)], 1)
ementary particle physics. The two most important predic-
tions of RMT are that properties concerning the full eigen-whereV(M) is a phenomenological confining potential, usu-
value support are largely nonunivergak, e.g., the average ally chosen so as to make the average level density agree
eigenvalue densily whereas eigenvalue statistics on thewith experimental observations, ahtlis the number of ei-
scale of the mean level spacing are universal and depergenvalues oM. The simplest choice is of course the har-
solely on generic symmetries of the syst&such as the pres- monic potentiaM(M)=k?M?/2, for which the average level
ence or absence of time-reversal invarignéeis currently  density reads
widely acknowledged that a RMT approach is the most ap-
propriate one when universal features of a physical phenom- Nk [4
enon need to be uncovered. p(X)=5_— Ez—Xz
. . . a
The random-matrix ensembles most frequently studied in
the recent literature can be classified into three weakly ove
lapping categoriegi) zero-dimensional matrix field theories,
which have found applications in disordered metallic
grains[2—-4], quantum chao$5], nuclear physicq6],
QCD [7] and two-dimensional2D) quantum gravity[8];
(i) Brownian motion ensembles, which have been used to ZPZ“‘—Z(X) —_
: . ; ; : p(X) VaZ—x2, ()
describe quasi-one-dimensional disordered conductors ™
[9-11], crossover ensembld42], parametric correla-
tions [13,14], and wave propagation in disordered me-wherea (the edge of the spectryrand the coefficients of the
dia [15]; and (iii) one-dimensional matrix field theories, polynomial P,,_,(x) are determined by the coefficients of
which have been applied to matrix quantum mechafié}  V(M). These results can be derived by orthogonal polyno-
c=1 string field theory[8], quantum chaos, and disordered mials techniqueg28] and saddle point method£9]. Ob-
metallic grains in the presence of external adiabatic perturserve that the nonuniversal structurepgk) is quite general.
bations[17]. The techniques developed in the literature toWe would like to stress that ensembles defined\i{M)
solve random-matrix problems vary significantly from onebeing a polynomial have found important applications in
category to the other. The most common techniques to studyonperturbative approaches to the theory of matter coupled
zero-dimensional matrix field theories are orthogonal polyto 2D quantum gravity[8].
nomials [1], Efetov’s coset method4,18], Brezin’s method It is now rather well established in the literature that en-
of anticommuting variables [19], the graded eigenvalue sembles like Eq(l) exhibit universal behavior if correlations
method [20], Kazakov’'s contour integral representation are measured on the scale of a few mean-level spacings
theory [21], Korteweg—de VriegKdV) hierarchy of equa- (A=1/N). The universal behavior has been classified into
tions [8], topological expansion§8], and the functional de- three types: the bulk universality, characterized by a sine-
rivative approach[22]. Brownian motion ensembles have kernel [1], the hard-edge universality, characterized by a
been studied by means of biorthogonal functigag], Bethe  Bessel kernel30] and the soft-edge universalify81]. The
ansatz method$23], Dyson’'s hydrodynamical equa- terminology hard and soft edges has been introduced in
tions [24], moment expansion techniqueglQ], and super- Refs. [30] and [31] to distinguish between bounded and un-
symmetry [25]. Finally, one-dimensional matrix field theo- bounded eigenvalue supports, respectively.

2

Yhis is the well-known Wigner’'s semicircle law. Other pos-
sibilities include cases wheré¢(M) is a polynomial of de-
gree 4, which yields
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Recently, Brein and Zeg 26,27 (see also Refl32]) re-  on the confining potential only through its end points. To be
discovered a somewhat weaker universality class in thispecific, they proved that for ensembles defined/bi) of
problem. They showed that when correlations are measurgublynomial form, the two-point density-density correlator is
on scales of orde®(N°), one obtains functions that depend given by

32 \/(b—x)(x—a)(b—y)(y—a)—ab—xy+(a+b)(x+y)/2
n
2Bm* 9xdy | —\[(b—x)(x—a)(b—y)(y—a)—ab—xy+ (a+b)(x+y)/2|’

p(x,y)= (4)

wherea<x,y<b and[a,b] is the support of the spectrum. that on scales 0O(N°), the dynamical two-point density-
This remarkable result has been shoj@4#] to be valid in  density correlator has the form
cases wher&/'(M) is nonpolynomial and infinitéhard wall

potentia) at the pointsx=a andx=b. Recently, generaliza- 1 |A+)
tions of Eq.(4) to more complicated ensembl¢33], such as p(xyiu)= 2B Ixady n A(—,u) |’ @)
those where the average density has support on several non-
overlapping intervals, have been derived. where
In mesoscopic systems formulas of this type have shown
up in the calculation of two-point functions relevant to de- A(o,u)=0+(b—x)(x—a)(b—y)(y—a)—ab—xy
scribing universal fluctuations of transport observables. In (b—a)?
this application of RMT the presence or the absence of a +(a+b)(x+y)/2+ sinttu. (®)

hard edge in the spectrum is crucial for determining the exact

value of the amplitude of the fluctuations of the observables,
such as the conductance of a two-probe device. in this formula the parameterlabels a continuous family of

It is quite instructive to use Ed4) to recover some well- ensembles of random matrices with parametric dependence.
known results of RMT by taking certain limits. For instance, In the language of one-dimensional matrix field theory
if we let a——b and b— we obtain the Dyson-Mehta U= u(t) is a well-behaved function of the target space vari-
formula ablet (usually interpreted as timeThe importance of this

result in mesoscopic physics can be illustrated by two simple
& particular cases. If we take the limits— —b, u—X?/(2b)
p(x.y)= 2872 axay In[x—yl, 4 andb—o we get
which describes fluctuations of linear statistics in ensembles o
of unbounded eigenvalue support. If we take-0 and p(x'y’x)_WRE[(i(x—y)quz)?]' ©
b—< we recover a formula, which has been derived origi-
nally by Beenakkef22] in the context of the global which is the result found by Altshulefl3,36 and collabo-

maximum-entropy approach to disordered conductors, rators, using diagrammatic expansions to study the effect of
external parametric perturbations in the density-density cor-

1 \/—+\/_ relator of disordered metallic grains. Similarly, if we let

p(X,y)= 2872 &xay ®  a—-0,u—X2bandb— = we get(after changing variables

x—/u andy—/v) the expression

This formula was later shown to be exact for describing fluc-
tuations of transport observables in open ballistic cavi- (v X) = —— e[ (10)
ties [35]. To disordered conductors with quasi-one- Y B* a—+1 (i(u+ UV)+X2)2 ’
dimensional geometries E¢6) does not apply, mainly due
to the presence of diffusion modes, which give rise to addiwhich is precisely the result found in R¢87] for the para-
tional correlations between transmission eigenvalues. In thigetric density-density correlator of transmission eigenvalues
case, the appropriate random-matrix ensemble does not haveopen ballistic cavities.
the form shown in Eq(1), but must be generated from a  In Ref. [27] it has been shown that Eq7) is valid for
Brownian-motion model, namely, the Dorokhov-Mello- confining potentialsV(M), which are polynomials. Unfor-
Pereyra-KumafDMPK) equation[9]. So far, extensions of tunately, the explicit calculations of this work are somewhat
formulas like Eq.(6) to more general geometries have notcumbersome and extensions to more general functional
been successful within the framework of random matrixforms of V(M) seem unlikely. However, we know from
theory, although results obtained from diagrammatic calcuRef. [34] that the static correlatoru&0) is valid under
lations are available in the literature for these cases as welfjuite weak assumptions about the form of the confining po-
More recently, Brein and Zee extended their result to tential V(M). The natural question seems to be to what ex-
ensembles in the category of one-dimensional matrix fieldent the dynamical correlatoug 0) is independent of the
theories. Using the language of larjeQCD, they showed functional form ofV(M).
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In this paper we provide a first step towards answering u®d o —Ji-7 Jr\[u® o0

this question. We give an alternative derivation of Ef). Sz( (2))( )( @)

that has the appealing feature of being much simpler but also 0 u VT V1-7/10 u

more general, since our strongest assumption at3oMt) is _

that it is capable of providing confinement of the levelswhereu™(i=1,...,4) areNXN unitary matrices ana de-

within a single interval. In Sec. Il, we introduce the notes an NXN diagonal matrix with real eigenvalues

S-matrix Brownian motion ensemble, which provides level0<7,<1 (¢=1,2,...N).

confinement in a natural way by means of symmetry require- The stationary(maximum entropy S-matrix ensemble

ments. We sketch briefly how the Fokker-Planck equation id1as been introduced in Reff35], and the Brownian motion

obtained from the stochastic process in Benatrix mani- ensemble in Refs[12] and [38]. While the maximum en-

fold. In Sec. lll, we show that Eq7) is a direct consequence tropy ensemble is somewhat straightforwdtde S matrix

of Dyson’s hydrodynamical approximation to the dynamicssimply covers its manifold ergodicallythe Brownian mo-

of an'S matrix undergoing Brownian motion on its manifold. tion ensemble has some subtlety. Following the generalized

A summary and conclusions are given in Sec. IV. form of Dyson’s hypothesis, the ensemble can be constructed
by a stochastic process, which has built into it the symme-
tries of the problem.

Il. THE S-MATRIX BROWNIAN MOTION ENSEMBLE So, letS(t) denote a point in th&-matrix manifold, and
let Sp(6t) be a random unitary matriftaken from a uniform

distribution, where the parameteris phenomenological in

were intrt%ducehd b_y [I)yso'ﬁtm]t Wi;ht;he Tc?ivationtﬂf im- nyson’s sense. The poilg(t) performs isotropic Brownian
proving the physical content of the stationary theory Of lniion determined by the law

Wigner. While quite successful as a mathematical tool for
describing local statistics of the spectra of complex nuclei,
the original Wigner ensembles were known to make quite S(t+ 1) =S(1)Se(8Y). (13
wrong predictions for global properties, such as the average )
level density. In a remarkable papf24], Dyson showed We choose the f_unctlona! de_pendence&‘@(&t) such that
how to build a new class of random-matrix ensembles with a>(&t—0)— 1. Without going into the details of the deriva-
lot of desirable properties and, in this way, he laid the foun-ion, which can be found in Ref12], the stochastic process
dations of modern nonequilibrium RMT. The ensemble in-8bove can be described in the continuum limit by the
troduced by Dyson is physically reasonable, mathematicallj-okker-Planck equation
tractable, recovers Wigner’s local statistics, and agrees well
with the observed eigenvalue density. Inspired by Brownian IW
motion theory, Dyson made the following assumptiofis: ot
the true Hamiltonian can be derived from the bare one by
equally likely random perturbation$2) the strength of the . e . .
perturbation is controlled by a parameter whose physicaY.Vhere the drift and diffusion coefficients are given, respec-
meaning depends on the model systdB); the stochastic tively, by
process is biased by fictitious driving forces such that it pro-
duces the observed eigenvalue density. Dyson’s Brownian
motion model has since been successfully applied to a large
variety of physical systems, including those with partially
broken symmetries and/or adiabatic parametric perturba- PP =7(1- 1) (16)
tions. Recent improvements of Dyson’s theory consisted of : ! .
generalizations of his third hypothesis to include cases in
which the symmetries of the physical system impose a par! N parameteg labels symmetry classeg=1 for orthogo-
ticular biasing of the stochastic process, which cannot b&al systems, wheregg=2 and g=4 for unitary and sym-
mimicked by fictitious forces. Examples of such BrownianPlectic systems, respectively. Observe that in the limit
motion models are the DMPK equation, tiematrix en- t— EQ.(14) has a maximum-entropy stationary solution
semble, and th&matrix ensemble.

The S matrix by definition establishes a relation between . 5 N Bi2-1
incoming flux amplitude$ andl’ and outgoing one® and Wed(7)=2 .1;[1 |7 = iﬂl 7i : (17)
(0L

) , (12

In the early days of RMT, Brownian motion ensembles

J
- DY+ 5D W, (14)

D= —(1+I2) 7+ B2+ B 2) nd=m) (15
j(#i

Ti_’Tj

in which Z is a normalization constant. Note the presence of

| 0 the typical random-matrix eigenvalue repulsion since
sl l=lol 1)  Weq—O if any 7,— 7;. Equation(14) defines theS-matrix
Brownian motion ensemble.

. S . . . Ill. BRE ZIN-ZEE DYNAMICAL CORRELATOR
Convervation of probability implies tha& is unitary. Math-

ematically, unitary matrices can be parametrized by the fol- In Ref. [27] the following one-dimensional matrix field
lowing polar decompositiori35]: theory has been considered
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. where ¢; = arcsin/7; and
P(M):Z_lexp—f dt TUK(d/dOM+V(M)],  (18)

B—2 B
_ _ _ Di=—7—csd2¢i) + 7col2¢))
which corresponds to @=1 string field theory. Using large-

N QCD techniques with the generalized gluon propagator B sin(2¢))

- = . (21

Dij (D =(Mjj(HDMy(0))>exd —u(®)], (19 271 Co82¢:) ~ COL2¢))

in which u(t) is a smooth function with finite value at Define the average level density

t=0, they showed that the two-point dynamical density- N

density correlator has the form shown in E@). o(e)={ > sle—¢n) ), (22
In this section we demonstrate how this result can be ob- n=1 t

tained from theS-matrix Brownian motion ensemble. The | . 1 (o< the useful property(¢,) = 2N/7=c,. Note

crucial pqmt is that this ensemble has a natl_JraI conflneme%at the choice of these variables is motivated by the techni-
of levels induced by the symmetry of the unitary group. S0,.5| neeq to unfold the spectrum. Nonetheless, the need for

if Eq. (7) is as generally valid as its static counterpart, theng,ch 5 procedure does not impose severe restrictions on the
one might expect that it may be obtained from standard nongnctional form of the one-body potenti®l(7). The hydro-
equilibrium RMT, provided one finds the appropriate dy- gynamical equations that we shall introduce briefly, require
namical biasing of the stochastic process. Here, we assumgy their solution unfolding of the spectrum on an interval of
that the symmetries of the unitary group provide the doml-O(No)' which corresponds to the universal regime of inter-

nant mechanism for the relaxation of the correlators in thg,; Cose to the end points the potential is still free of con-
universal domain, which is, as discussed in the Introductiong,zints
5 .
of O(N"). . . Following Dyson, we now take the hydrodynamic limit of
We start by writing Eq(14) in the form Eq. (20). The technical details of such a standard procedure
are described in detail in Ref24], (see also Ref[14]). The

2
£=E _ iD-+ 1‘9_ = (20) final result is that the average level density in the lakge-
gt S| g 4| limit obeys the nonlinear equation
|
do(p,t) d d wl2 , , ,
- Bogloleth g | o(e’,b)incog2¢e)—cod2¢’)|de’ |. (23
¢ de~ Jo

For our purpose it is sufficient to solve this equation bythis equation is twofold: first it provides the bounds for the
linearizing it around the equilibrium solution. We define theintegral, which in fact is fixed by symmetry, and second it
function must be such that the average eigenvalue density is roughly
constant on a scale @(N°). This last constraint comes also
do(pt)=0(e,t)—0g, (24 naturally from the structure of th8-matrix manifold. This
. ) o ) ] integrodifferential equation can be solved exactly by Fourier
which, by virtue of Eq.(23), satisfies the linear equation series. With this in mind we propose the expansion

P00t ) Fma 't "de', (25 -
g Boow . a(¢",)Q(p,¢")de’, (25 so(o)=S Son(t)cos2ne), @7
n=1
where - _ '
and after substituting Eq27) into Eq. (25) we find the or-
o dinary differential equation
Qle,¢')=42, ncog2ne)cos2ne’).  (26)
n=1 déo(t)
T =—Bmnoydoy(t), (28

This equation in the main result of this section and some
comments are in order. It is for our purpose more important ) .
than the Brownian-motion Fokker-Planck equation itself, be-Which can be easily solved to yield

cause it is stripped of nonuniversal features. The form of the

kernel Q(¢,¢') is fixed by the equilibrium level repulsion Sory(t) = 8oy (0)e™ ™Y, (29
potential, which yieldgas we discussed in the Introductjon

under quite weak assumptions, the universal static densitywhereu(t) = Bmot. We are now in a position to calculate
density correlatofsee Eq.(4)]. The effect of the drift and the time-dependent two-point correlator, which is defined as
diffusion coefficients of the Brownian motion ensemble onthe following equilibrium average
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S(e,¢";t)=(00(¢,t) 0(¢,0))eq

Egl (804(1) 84(0)) o0 2np)cOg 2n0").

(30
Using Eq.(29) we find
(80n(1) 501(0))eq= € ""V(50,(0) 504(0)) eq
8n
—a-nut)
=e ‘18772. (3D
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where

A(o,u)=a+(b—x)(x—a)(b—y)(y—a)—ab—xy
2

2

+(a+ b)(x+y)/2+( sinkfu. (35)

This is precisely the result obtained in R¢27].

IV. SUMMARY AND CONCLUSIONS

In this work we have demonstrated how BireZee’s dy-
namical correlator can be obtained from &matrix Brown-

In Eq. (31) we have inserted the value of the static correlatorjan motion model. A clear advantage of our approach is its
which can be calculated directly from the equilibrium solu- simplicity, in comparison with the diagrammatic method of

tion by standard methods. Insertit@fl) into (30) and evalu-
ating the infinite sum we find the closed-form result

1 d coshu—cos2 ¢+ ¢')

2B dpde’ In coshu—cos2A¢o—¢') |’
(32)

S(p,@";u)=

To make contact with the Brin-Zee dynamical correlator
we need to perform the following change of variables:

_b+a b—a
X= 5 5 cos,
b+a b-—a

y= - - TcosZP , (33

after which we find
1 # A+ 24
pPOGYiU)= 2872 axay | A=) |’ (34)

Ref. [27]. Furthermore, our ensemble of matrices has natural
confinement of levels, which is induced by symmetry. In this
way, the fundamental role of the potent\{M) (see Intro-
duction for providing the spectral end-point dependence of
the universal correlators is incorporated into the theory from
the beginning, without any particular assumption on the
functional form ofV(M). We believe that such an approach
has considerable practical importance, particularly in under-
standing the connections between the various classes of
random-matrix ensembles and the related model systems, for
that matter. Extensions of our results to more elaborate cases,
such as ensembles where the eigenvalue support contains
multiple nonoverlapping intervals and crossover problems
does seem possible, but will be left to the future.
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